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ABSTRACT

In this paper we propose a method for reconstructing the 2D geome-
try of the surrounding environment based on the signals acquired by
a fixed microphone, when a series of acoustic stimula are produced
in different positions in space. After estimating the Times Of Arrival
(TOAs) of the reflective paths, we turn each TOA into a projective
geometric constraint that can be used for determining the locations
of the reflectors. The result consists of a collection of planar surfaces
that correspond to the reflectors’ locations. In this paper we present
the whole processing chain and prove its effectiveness through ex-
perimental results.

Index Terms— Geometrical acoustics, acoustic environment,
projective geometry, active sensing.

1. INTRODUCTION

A wide variety of space-time processing algorithms can greatly ben-
efit from the knowledge of the environment’s geometry. For exam-
ple, in [1] we showed that the interferer cancelation can be improved
when we have some hints on the Directions Of Arrival of the inter-
ferer signal as well as its dominant reflections.

The literature is rich with solutions that enable the reconstruc-
tion of the geometry of the environment based on various methodolo-
gies ranging from computer vision ([2]) to radar tomography ([3]).
Acoustic acquisitions conducted in a reverberant environment, in
fact, carry information not only on visible but also on non visible
surfaces. If advantageously used, this information may enrich our
knowledge on the environment surrounding the acquisition device.
Spherical arrays ([4, 5]) have stirred a certain interest in the research
community thanks to their remarkable resolution and compactness.
In [6], [7] and [8] spherical arrays are used for inferring the tempo-
ral sequence of reflections in the environment as well as the three-
dimensional directions of arrival. In order to achieve the desired
resolution, the spherical array needs to have numerous microphones
in a compact case.

In this paper we assume that reflectors are piece-wise linear and
two-dimensional. Our acquisition device is composed by a single
microphone standing in a known position and a loudspeaker rotat-
ing around the microphone. The emitter generates a noise-like se-
quence which propagates in the environment. The microphone re-
ceives, along with the direct signal, delayed and dimmed replicas
of the signal associated to wall reflections. Wavefront propagation
is assumed to be subject to the laws of optical geometry, which set
specific constraints on the reflective path. In this paper we devise a
methodology that exploits such constraints in order to efficiently and
robustly infer the environment’s geometry.

We begin with measuring the impulse response of the environ-
ment from the loudspeaker’s positions to the microphone, using the
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cross-correlation of the emitted and the acquired signals. The Times
of Arrival (TOAs) of the reflected signals are then extracted through
a simple peak-picking algorithm. The time of flight of the path from
the loudspeaker’s positions to the reflector is the sum of two com-
ponents: one from the loudspeaker to the reflector; and one from
the reflector to the microphone. The locus of candidate reflection
points is, therefore, an ellipse. If we consider a different location of
the loudspeaker, the reflection point changes and, in turn, the Time
Of Arrival changes. However, the reflection points are bound to be
aligned with the reflector. The reflector, in fact, is the line of tan-
gency to all the ellipses that are traced, each one for a different po-
sition of the loudspeaker. We will show how a projective geometric
representation can be seamlessly used for estimating such lines of
tangency.

The manuscript is organized as follows: Section 2 describes the
data model for the localization of a single reflector; Section 3 de-
scribes how to localize a single reflector; Section 4 extends the re-
sult to the case of multiple reflectors; Section 5 presents some ex-
perimental results; finally Section 6 draws some conclusions on the
method.

2. DATA MODEL AND PROBLEM FORMULATION

In this Section we introduce the data model used throughout the pa-
per and we formulate the problem of reflector localization. Let us
consider a loudspeaker that moves on a pre-determined discrete tra-
jectory denoted by the points xx = [21x, z2x]”, k=1,..., K. On
each point of the trajectory a known signal s;(¢) of duration 77[s] is
produced. We use the same probing signal s;(¢) for all locations.

A synchronized microphone receives the signal sy (t), k =
1,..., K. With no loss of generality we assume that the origin of the
reference frame is centered in the microphone position M. Together
with the direct signal, the microphone receives replicas reflected by
walls and obstacles. Our goal is to infer the geometry of the environ-
ment from the analysis of sx(¢). We will first focus on the problem
of localizing a single reflector, which means that only a reflection is
present in sx (t). We will then consider the case of multiple reflectors
in Sec. 4.

Given s;(t) and s(t), we can estimate the channel response
from x5, to M as the cross-correlation of s;(¢) and s (). Our esti-
mate is:

hi(t) = a\P6(t — 71V + )
+a\"6(t =) 4 ()  k=1,..., K,
where T,id) and Tkr) are the times of flight of the direct and reflected

paths, respectively, when the loudspeaker is in xy; aﬁj“ and a,(:)
are the corresponding attenuations. The term v(t), finally, models
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Fig. 1. Geometry of the problem: a reflector lies on the line /, the
microphone is fixed in M, the loudspeaker is moved on different
locations x;. Correspondingly, the reflection point on / changes,

therefore the Time of Arrival T,ET) changes as well.

an additive noise. We assume that the laws of optical geometry are
valid. Figure 1 illustrates the geometry of the problem: the obstacle
lies on the line 1 = [l1, l2, lg}T, the microphone is still in M; as we
move the loudspeaker, the reflection points P ,k = 1,..., K that
satisfy the Snell’s law moves as well and, consequently, the Time of
Arrival Tfk) changes. The Time of Arrival (TOA) Tr(k) is the sum
of the time of flight from xj, to Py, and from Py to M. The locus
of possible points Py that share the same TOA 7" is an ellipse of
foci M and xj. Let us consider the tangent to that ellipse in P.
Basic geometry tells us that its perpendicular is also the bisector of
the angle M/Ji(k This means that every tangent to the ellipse is
a putative reflector line 1, as it honors Snell’s law. Each one of the
positions x; k = 1,..., K of the source corresponds to an ellipse
of possible points of reflection, and just as many reflectors (tangents
to such point). We notice, however, that the line 1 is tangent to all
the ellipses. This line is therefore the intersection of all the bundles
of the tangent lines (one bundle per ellipse) and represents the actual
reflector.

In order to determine the intersection of all the bundles of tan-
gent lines, we adopt a notation borrowed from projective geometry
[9]. A point x = [x1,x2,1]T (in homogeneous - scalable - coordi-
nates) belongs to a conic of parameters [ax, by, ck, i, ex, fx]” iff
(if and only if):

aixt + brwox: + cras + drzy + exxo + fr =0 . 2)

Eq. (2) can be rewritten in matrix form as

x"Crx =0, 3)
where
Qak bk/Q dk/2
Cp= |br/2 & er/2 “4)
di/2 er/2 [k

is the matrix of the “point conic”.  The parameter vector
[ak, by, ck, dx, ek, fx]T is scalable, therefore the knowledge of five
points on the ellipse is sufficient to determine it (see [9] for refer-
ence on this point). As far as the determination of points on the
ellipse, the knowledge of the Time of Arrival T,ﬁr) and of the foci M
and xj, allow us to determine an arbitrarily large number of points
on the ellipse. More useful for our purposes is the definition of the
“line conic” associated to the above-defined point conic. The ho-
mogeneous representation of a line is given by the scalable vector
1= [I; Iz I3]7. The line 1 passes through the point x iff (if and only
if) 17x = 0. The line 1 is therefore tangent to the point ellipse Cy, if

1"c*l=0, 5)
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where C*), = det (Ck)C,:1 is the adjoint of the conic-matrix Cy
[9]. As we are dealing with homogeneous coordinates, we can drop
the scale factor det (Cy) and use the inverse of Cy, as the adjoint.
The matrix C*, is known as the “line conic" of Cy, i.e. the bundle
of all lines that are tangent to Cy. This bundle corresponds to a
manifold in the parameter space [I1 l2 I3]7, as shown in Fig. 2.
In the next Section we devise an algorithm that nails the position

Fig. 2. The surface represents the set of lines tangent to an ellipse in
the line parameter space.

of the reflector combining multiple constraints derived for different
positions of the loudspeaker.

3. LOCALIZATION OF A SINGLE REFLECTOR

As shown in the last paragraph, if we acquire the channel response
for different positions of the loudspeaker, the actual reflector line 1
must satisfy eq.(5) for k = 1, ..., K. Figure 3 depicts an example:

1 P _ P, P

Fig. 3. The reflector line is the common tangent to the ellipses traced
for x1, x2 and x3.

the actual reflector line is the common tangent to the ellipses traced
for xi, k =1,2,3.

If the points xx, £ = 1,..., K are known in advance and the
TOA T,Er) is estimated by inspection of hy(¢), we are able to trace the
ellipses Ci, k = 1,..., K. The actual reflector line is the solution
of the equations:

1"c*11 =0
1"C*1 =0

: ©)
1"C*x1 =0

Since we have three unknowns (the parameters /1, l2, [3) we need at
least three equations in the system (6).

The solution of a nonlinear system as in (6) is not trivial as our
measures of 7',5” are affected by estimation error. We call the algo-
rithm as COmmon Tangent Algorithm (COTA). The cost function to

be minimized is:

K
T : T &veq)12
1= arg min E " Cr|” . (7)

k=1



The matrices C; are affected by estimation error with respect to
C;.. Moreover, we observe that Cj; are neither negative nor positive
definite. Therefore the objective function in (7) is not granted to have
a global minimum: in fact we notice that if the line 1 is a solution of
(6), then also kl is. For this reason, in the next paragraphs we will
consider a subspace of R? in which the minimization problem in (7)
is granted to have a unique solution. More specifically, we impose
that [ and l2 lie on a circle of unitary radius:

li = cos(a), 8)

lo  =sin(a).

If we perform our minimization on 1, = [cos(a), sin(a), I3]7, (p =
1), the COTA now becomes:

K
T . T Ax 2
l, = arg min ,;,1 1o Crla||” - )

Fig.4 depicts the geometry of the problem in the line parameter
space: the solution of eq.(7) in R® corresponds to finding the com-
mon solution of the manifolds of tangent lines for x, £ = 1,2, 3.
When we impose eq.(9) we are finding the intersection of the man-
ifolds along the cylinder of unitary radius. [, [3]. The problem of

Fig. 4. Eq.(9) corresponds to finding the solution of the equation
system in (6) along a cylinder of unitary radius whose axis coincides
with the I3 axis.

estimating the parameters [I1, l2, [3]” has now turned into the prob-
lem of estimating the parameters [c, [3]” that enable the intersection
of the manifolds of tangent lines on the cylinder.

Since we are considering a system of second order equations,
we expect two solutions for the system in (9). Figure 5 presents the
cylindrical section of the manifolds of tangent lines corresponding
to the situation in Figure 4. We observe, as expected, two solutions
for the problem: [« = 45°,13 = 0.5] and [ = 225°,[3 = —0.5].

4. LOCALIZATION OF MULTIPLE REFLECTORS

In this Section we will extend the approach described above to the
case of multiple reflectors. In this situation the k-th impulse response
becomes:

hi(t) =al8(t — (") + X5 al?8(t — 77 +
+37 oM — M) +u(t) . (10)

The meaning of the terms in eq.(10) is analogous to eq.(1), but now
G reflective paths appear. The first summation in eq.(10) concerns
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Fig. 5. Cylindrical section of the manifolds of tangent lines traced

for /12 +12=1

the first-order reflections that link x5 and M, while the last summa-
tion in eq.(10) models reflections involving multiple bouncings on
obstacles.

For each point of the trajectory, the peak picking algorithm re-
turns multiple local maxima in the impulse response. The variable
Tk; represents a maximum found in hy(t). These maxima, how-
ever, are not organized in a labeled dataset, as each element 7y is
not assigned to a reflector. In order to use the COTA for multiple
reflectors, we have to find TOAs in 74 that correspond to the same
reflector. At each step of the trajectory, the loudspeaker is located
at a distance r and at an angle O in a reference frame centered at
the microphone. After some passages (omitted here for reasons of
space) the TOAs relative to a reflector positioned at distance p and
seen from the microphone under the angle ¢ are aligned on the func-
tion 74(6, p) = p/c — r/csin(0 — 0). The geometric notation is
described for convenience in Fig.6. In order to find the correspon-

(,©x) (p.0)

Fig. 6. Geometry used for the TDOA assignment

dences, we look in the space (0, p) for the TOASs in the set 75, that
belong to the same curve 74 (0, p), k = 1,..., K. In order to do so
we use the generalized Hough transform [10]. We do not describe
the assignment algorithm for reasons of space. Figure 7 shows an
example of labeling. Fig.7(a) shows the unlabeled dataset, while (b)
shows the labeled one. We can observe that some items in the set
Tk, are not assigned as they are not aligned on any curve 7% (6, p).
The proposed labeling method, therefore, is robust to the presence
of outliers in 7%; due to environmental noise.

5. EXPERIMENTAL RESULTS

In this Section we will present experimental results for the recon-
struction of the geometry of two environments. Experiments have
been conducted in an acoustically dry room in which wood panels
have been placed to alter the impulse response. The first experiment
concerns the problem of localizing two reflectors that are not mutu-
ally visible. In a later stage we will consider the case of mutually
visible reflectors. The points xx, k = 1,...,24 are equally spaced
on a circle whose radius is R = 0.16m. The sampling frequency
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Fig. 7. An example of labeling of the dataset 7. (a) is the unlabeled
dataset, while (b) is the result of the labeling process.

is F's = 44, 1k H z and the excitation signal is a white noise in the
bandwidth [0, 5k H z]. The accuracy of localization of reflectors (real
and virtual ones) is measured with two parameters, partially interde-
pendent:

e if land 1 are, respectively, the actual and estimated reflector
lines, we measure |1-1]/(|[1]]||1]]): a value close to 1 reveals
that the angle between lines is small.

e cach line is observed from the center of the reference frame
(the microphone) at a distance p and under an angle of view
6. We compare these estimates with the measures (p,é) done
with rulers.

The geometry of the system for the first environment is depicted in
Figure 8. Numbers next to the walls refer to indexes in Table 1,
where localization results for both reflectors are shown according to
the criteria defined above. In the second experiment we have tested

Fig. 8. Geometry of the first test environment

Table 1. Experimental results for the environment in Fig.8):
(01°], plm]) and (0[°], p[m]) are the hand-measured and estimated

positions, while [1-1//(]|1|]|[1]|) measures the alignment of the esti-
mated and theoretical lines.

Index | (0[°],p[m]) | (0[], p[m]) | [1-1[/([I1II[X]])
1 | (180,1.805) | (178,1.81) | 0.99
2 | (90,224) | (89,224) |1

the system in the environment depicted in Figure 9. Dashed lines re-
fer to “virtual reflectors”, originated from second-order reflections.
Table 2 shows the corresponding localization results using the met-
rics defined at the beginning of this Section. We notice that even
“virtual” reflectors are localized with a good accuracy.

6. CONCLUSIONS

In this paper we have shown an efficient and effective method-
ology for the reconstruction of the geometry of an environment
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Fig. 9. Geometry of the second test environment

Table 2. Experimental results for the environment in Fig.9):
(0°], p[m]) and (A[°], p[m]) are the hand-measured and estimated
positions, while [1- 1| /(|[1]||[1]|) measures the alignment of the esti-
mated and theoretical lines.

Index | (0[°],p[m]) | (0[], plm]) | [1-1/([[L]][1]])

1 | (270,1.18) | 270,1.17) |1

2| (180,1.37) | (179,1.38) | 0.99
3| (90,1.68) (89,1.68) 0.99
4 | (360,2.08) | (3582.08) | 0.99
5 | (2702.82) | (2712.84) | 0.99
6 | (90,2.82) (85,2.85) 0.97
7 | (180,3.44) | (181,345) | 0.99
8 | (360,3.44) | (357.3.44) | 098

through acoustic acquisitions by using projective geometry con-
straints. Some experimental results show the feasibility of the ap-
proach. In the next months, we will work on the problem of discern-
ing real and virtual reflectors.
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